Copied to
clipboard

G = C42.145D10order 320 = 26·5

145th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.145D10, C10.742+ 1+4, C10.932- 1+4, C4.4D417D5, (C2×Q8).84D10, D10⋊D443C2, D103Q834C2, (C2×D4).113D10, C4.D2031C2, C22⋊C4.38D10, C20.6Q829C2, Dic5⋊D435C2, (C2×C20).633C23, (C4×C20).222C22, (C2×C10).228C24, (C2×D20).37C22, C4⋊Dic5.52C22, D10.12D447C2, C2.54(D48D10), C2.78(D46D10), C23.50(C22×D5), (D4×C10).213C22, C22.D2028C2, (C22×C10).58C23, (Q8×C10).131C22, C22.249(C23×D5), Dic5.14D443C2, C23.D5.60C22, D10⋊C4.73C22, C54(C22.56C24), (C2×Dic10).41C22, (C2×Dic5).118C23, C10.D4.84C22, (C22×D5).100C23, C2.54(D4.10D10), (C22×Dic5).147C22, (C5×C4.4D4)⋊20C2, (C2×C4×D5).132C22, (C2×C4).201(C22×D5), (C2×C5⋊D4).66C22, (C5×C22⋊C4).69C22, SmallGroup(320,1356)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.145D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C42.145D10
C5C2×C10 — C42.145D10
C1C22C4.4D4

Generators and relations for C42.145D10
 G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >

Subgroups: 854 in 220 conjugacy classes, 91 normal (31 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic5, C20, D10, C2×C10, C2×C10, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C22.56C24, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, C20.6Q8, C4.D20, Dic5.14D4, D10.12D4, D10⋊D4, C22.D20, Dic5⋊D4, D103Q8, C5×C4.4D4, C42.145D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.56C24, C23×D5, D46D10, D48D10, D4.10D10, C42.145D10

Smallest permutation representation of C42.145D10
On 160 points
Generators in S160
(1 117 51 39)(2 30 52 108)(3 119 53 21)(4 32 54 110)(5 101 55 23)(6 34 56 112)(7 103 57 25)(8 36 58 114)(9 105 59 27)(10 38 60 116)(11 107 41 29)(12 40 42 118)(13 109 43 31)(14 22 44 120)(15 111 45 33)(16 24 46 102)(17 113 47 35)(18 26 48 104)(19 115 49 37)(20 28 50 106)(61 146 123 87)(62 98 124 157)(63 148 125 89)(64 100 126 159)(65 150 127 91)(66 82 128 141)(67 152 129 93)(68 84 130 143)(69 154 131 95)(70 86 132 145)(71 156 133 97)(72 88 134 147)(73 158 135 99)(74 90 136 149)(75 160 137 81)(76 92 138 151)(77 142 139 83)(78 94 140 153)(79 144 121 85)(80 96 122 155)
(1 94 11 84)(2 85 12 95)(3 96 13 86)(4 87 14 97)(5 98 15 88)(6 89 16 99)(7 100 17 90)(8 91 18 81)(9 82 19 92)(10 93 20 83)(21 80 31 70)(22 71 32 61)(23 62 33 72)(24 73 34 63)(25 64 35 74)(26 75 36 65)(27 66 37 76)(28 77 38 67)(29 68 39 78)(30 79 40 69)(41 143 51 153)(42 154 52 144)(43 145 53 155)(44 156 54 146)(45 147 55 157)(46 158 56 148)(47 149 57 159)(48 160 58 150)(49 151 59 141)(50 142 60 152)(101 124 111 134)(102 135 112 125)(103 126 113 136)(104 137 114 127)(105 128 115 138)(106 139 116 129)(107 130 117 140)(108 121 118 131)(109 132 119 122)(110 123 120 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 36 31 26)(22 25 32 35)(23 34 33 24)(27 30 37 40)(28 39 38 29)(41 50 51 60)(42 59 52 49)(43 48 53 58)(44 57 54 47)(45 46 55 56)(61 126 71 136)(62 135 72 125)(63 124 73 134)(64 133 74 123)(65 122 75 132)(66 131 76 121)(67 140 77 130)(68 129 78 139)(69 138 79 128)(70 127 80 137)(81 145 91 155)(82 154 92 144)(83 143 93 153)(84 152 94 142)(85 141 95 151)(86 150 96 160)(87 159 97 149)(88 148 98 158)(89 157 99 147)(90 146 100 156)(101 112 111 102)(103 110 113 120)(104 119 114 109)(105 108 115 118)(106 117 116 107)

G:=sub<Sym(160)| (1,117,51,39)(2,30,52,108)(3,119,53,21)(4,32,54,110)(5,101,55,23)(6,34,56,112)(7,103,57,25)(8,36,58,114)(9,105,59,27)(10,38,60,116)(11,107,41,29)(12,40,42,118)(13,109,43,31)(14,22,44,120)(15,111,45,33)(16,24,46,102)(17,113,47,35)(18,26,48,104)(19,115,49,37)(20,28,50,106)(61,146,123,87)(62,98,124,157)(63,148,125,89)(64,100,126,159)(65,150,127,91)(66,82,128,141)(67,152,129,93)(68,84,130,143)(69,154,131,95)(70,86,132,145)(71,156,133,97)(72,88,134,147)(73,158,135,99)(74,90,136,149)(75,160,137,81)(76,92,138,151)(77,142,139,83)(78,94,140,153)(79,144,121,85)(80,96,122,155), (1,94,11,84)(2,85,12,95)(3,96,13,86)(4,87,14,97)(5,98,15,88)(6,89,16,99)(7,100,17,90)(8,91,18,81)(9,82,19,92)(10,93,20,83)(21,80,31,70)(22,71,32,61)(23,62,33,72)(24,73,34,63)(25,64,35,74)(26,75,36,65)(27,66,37,76)(28,77,38,67)(29,68,39,78)(30,79,40,69)(41,143,51,153)(42,154,52,144)(43,145,53,155)(44,156,54,146)(45,147,55,157)(46,158,56,148)(47,149,57,159)(48,160,58,150)(49,151,59,141)(50,142,60,152)(101,124,111,134)(102,135,112,125)(103,126,113,136)(104,137,114,127)(105,128,115,138)(106,139,116,129)(107,130,117,140)(108,121,118,131)(109,132,119,122)(110,123,120,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,36,31,26)(22,25,32,35)(23,34,33,24)(27,30,37,40)(28,39,38,29)(41,50,51,60)(42,59,52,49)(43,48,53,58)(44,57,54,47)(45,46,55,56)(61,126,71,136)(62,135,72,125)(63,124,73,134)(64,133,74,123)(65,122,75,132)(66,131,76,121)(67,140,77,130)(68,129,78,139)(69,138,79,128)(70,127,80,137)(81,145,91,155)(82,154,92,144)(83,143,93,153)(84,152,94,142)(85,141,95,151)(86,150,96,160)(87,159,97,149)(88,148,98,158)(89,157,99,147)(90,146,100,156)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)>;

G:=Group( (1,117,51,39)(2,30,52,108)(3,119,53,21)(4,32,54,110)(5,101,55,23)(6,34,56,112)(7,103,57,25)(8,36,58,114)(9,105,59,27)(10,38,60,116)(11,107,41,29)(12,40,42,118)(13,109,43,31)(14,22,44,120)(15,111,45,33)(16,24,46,102)(17,113,47,35)(18,26,48,104)(19,115,49,37)(20,28,50,106)(61,146,123,87)(62,98,124,157)(63,148,125,89)(64,100,126,159)(65,150,127,91)(66,82,128,141)(67,152,129,93)(68,84,130,143)(69,154,131,95)(70,86,132,145)(71,156,133,97)(72,88,134,147)(73,158,135,99)(74,90,136,149)(75,160,137,81)(76,92,138,151)(77,142,139,83)(78,94,140,153)(79,144,121,85)(80,96,122,155), (1,94,11,84)(2,85,12,95)(3,96,13,86)(4,87,14,97)(5,98,15,88)(6,89,16,99)(7,100,17,90)(8,91,18,81)(9,82,19,92)(10,93,20,83)(21,80,31,70)(22,71,32,61)(23,62,33,72)(24,73,34,63)(25,64,35,74)(26,75,36,65)(27,66,37,76)(28,77,38,67)(29,68,39,78)(30,79,40,69)(41,143,51,153)(42,154,52,144)(43,145,53,155)(44,156,54,146)(45,147,55,157)(46,158,56,148)(47,149,57,159)(48,160,58,150)(49,151,59,141)(50,142,60,152)(101,124,111,134)(102,135,112,125)(103,126,113,136)(104,137,114,127)(105,128,115,138)(106,139,116,129)(107,130,117,140)(108,121,118,131)(109,132,119,122)(110,123,120,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,36,31,26)(22,25,32,35)(23,34,33,24)(27,30,37,40)(28,39,38,29)(41,50,51,60)(42,59,52,49)(43,48,53,58)(44,57,54,47)(45,46,55,56)(61,126,71,136)(62,135,72,125)(63,124,73,134)(64,133,74,123)(65,122,75,132)(66,131,76,121)(67,140,77,130)(68,129,78,139)(69,138,79,128)(70,127,80,137)(81,145,91,155)(82,154,92,144)(83,143,93,153)(84,152,94,142)(85,141,95,151)(86,150,96,160)(87,159,97,149)(88,148,98,158)(89,157,99,147)(90,146,100,156)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107) );

G=PermutationGroup([[(1,117,51,39),(2,30,52,108),(3,119,53,21),(4,32,54,110),(5,101,55,23),(6,34,56,112),(7,103,57,25),(8,36,58,114),(9,105,59,27),(10,38,60,116),(11,107,41,29),(12,40,42,118),(13,109,43,31),(14,22,44,120),(15,111,45,33),(16,24,46,102),(17,113,47,35),(18,26,48,104),(19,115,49,37),(20,28,50,106),(61,146,123,87),(62,98,124,157),(63,148,125,89),(64,100,126,159),(65,150,127,91),(66,82,128,141),(67,152,129,93),(68,84,130,143),(69,154,131,95),(70,86,132,145),(71,156,133,97),(72,88,134,147),(73,158,135,99),(74,90,136,149),(75,160,137,81),(76,92,138,151),(77,142,139,83),(78,94,140,153),(79,144,121,85),(80,96,122,155)], [(1,94,11,84),(2,85,12,95),(3,96,13,86),(4,87,14,97),(5,98,15,88),(6,89,16,99),(7,100,17,90),(8,91,18,81),(9,82,19,92),(10,93,20,83),(21,80,31,70),(22,71,32,61),(23,62,33,72),(24,73,34,63),(25,64,35,74),(26,75,36,65),(27,66,37,76),(28,77,38,67),(29,68,39,78),(30,79,40,69),(41,143,51,153),(42,154,52,144),(43,145,53,155),(44,156,54,146),(45,147,55,157),(46,158,56,148),(47,149,57,159),(48,160,58,150),(49,151,59,141),(50,142,60,152),(101,124,111,134),(102,135,112,125),(103,126,113,136),(104,137,114,127),(105,128,115,138),(106,139,116,129),(107,130,117,140),(108,121,118,131),(109,132,119,122),(110,123,120,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,36,31,26),(22,25,32,35),(23,34,33,24),(27,30,37,40),(28,39,38,29),(41,50,51,60),(42,59,52,49),(43,48,53,58),(44,57,54,47),(45,46,55,56),(61,126,71,136),(62,135,72,125),(63,124,73,134),(64,133,74,123),(65,122,75,132),(66,131,76,121),(67,140,77,130),(68,129,78,139),(69,138,79,128),(70,127,80,137),(81,145,91,155),(82,154,92,144),(83,143,93,153),(84,152,94,142),(85,141,95,151),(86,150,96,160),(87,159,97,149),(88,148,98,158),(89,157,99,147),(90,146,100,156),(101,112,111,102),(103,110,113,120),(104,119,114,109),(105,108,115,118),(106,117,116,107)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4E4F···4K5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order122222224···44···45510···101010101020···2020202020
size11114420204···420···20222···288884···48888

47 irreducible representations

dim11111111112222244444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2D5D10D10D10D102+ 1+42- 1+4D46D10D48D10D4.10D10
kernelC42.145D10C20.6Q8C4.D20Dic5.14D4D10.12D4D10⋊D4C22.D20Dic5⋊D4D103Q8C5×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8C10C10C2C2C2
# reps11122222212282221444

Matrix representation of C42.145D10 in GL8(𝔽41)

399000000
42000000
001190000
0032300000
00001210237
0000922914
0000016109
000025163238
,
4000280000
04013130000
33100000
380010000
000023361526
00004018026
000000171
0000004024
,
52230350000
283322360000
02827190000
171322170000
000020252538
0000533187
00003237334
00003203626
,
21356110000
12205190000
241222140000
392724190000
00003725730
0000333142
000013373816
000090515

G:=sub<GL(8,GF(41))| [39,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,12,9,0,25,0,0,0,0,10,22,16,16,0,0,0,0,23,9,10,32,0,0,0,0,7,14,9,38],[40,0,3,38,0,0,0,0,0,40,3,0,0,0,0,0,0,13,1,0,0,0,0,0,28,13,0,1,0,0,0,0,0,0,0,0,23,40,0,0,0,0,0,0,36,18,0,0,0,0,0,0,15,0,17,40,0,0,0,0,26,26,1,24],[5,28,0,17,0,0,0,0,22,33,28,13,0,0,0,0,30,22,27,22,0,0,0,0,35,36,19,17,0,0,0,0,0,0,0,0,20,5,32,32,0,0,0,0,25,33,37,0,0,0,0,0,25,18,3,36,0,0,0,0,38,7,34,26],[21,12,24,39,0,0,0,0,35,20,12,27,0,0,0,0,6,5,22,24,0,0,0,0,11,19,14,19,0,0,0,0,0,0,0,0,37,3,13,9,0,0,0,0,25,33,37,0,0,0,0,0,7,14,38,5,0,0,0,0,30,2,16,15] >;

C42.145D10 in GAP, Magma, Sage, TeX

C_4^2._{145}D_{10}
% in TeX

G:=Group("C4^2.145D10");
// GroupNames label

G:=SmallGroup(320,1356);
// by ID

G=gap.SmallGroup(320,1356);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽